If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6y^2+520y=2450
We move all terms to the left:
-6y^2+520y-(2450)=0
a = -6; b = 520; c = -2450;
Δ = b2-4ac
Δ = 5202-4·(-6)·(-2450)
Δ = 211600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{211600}=460$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(520)-460}{2*-6}=\frac{-980}{-12} =81+2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(520)+460}{2*-6}=\frac{-60}{-12} =+5 $
| 11(0)+12y=4 | | 4x(6)=17 | | 7x+64=84 | | N+6+2n=11+8n | | 6x^2+80x=-6450 | | 3x^2+2x+456=0 | | -2x-2(4x-12)=8(-2x-6) | | 3x+2+7=37 | | 0=5x+17 | | 8x+4(-3x-2)=-9-3x | | 6(-8x-2)+5(1-8x)=-7 | | 25+35n=620 | | 5/4a=-5 | | y^2-600y=10448 | | 48/x=-16 | | (x)=11+3x+2 | | 16=v/12+13 | | 6x^2-520x=5550 | | 45x-16=11 | | c+1.80=8.45 | | 10x-13+9x+1=180 | | -25=2n-11 | | 15x-7+14x=90 | | 4(w+1=-24 | | 3j=9j-90 | | x+90+56.4=180 | | 4(-11/5)-12y=16 | | .007x=12.50 | | 12.5x=12.50 | | 2(3y+4)=6 | | 4-n=38 | | -4(4+3x)+2(x)=6 |